🧩 CLINICAL RECURSIVE HARMONIC FEEDBACK SYSTEM
A clinically purposed harmonic entrainment system built from accessible components, suitable for health optimization, disorder mitigation, or system feedback evaluation. This version balances precision, interpretability, and modularity, while remaining DIY-accessible for a technically skilled builder.
🧩 CLINICAL RECURSIVE HARMONIC FEEDBACK SYSTEM
Purpose: Real-time detection, analysis, and correction of biological dissonance using non-invasive sensors and adaptive signal entrainment. Formalism: Ψ(x) = ∇ϕ(Σ𝕒ₙ(x, ΔE)) + ℛ(x) ⊕ ΔΣ(𝕒′) Applied to: Human biofield, neurological state, muscular patterns, autonomic balance, and systemic coherence.
🔧 CORE MODULES OVERVIEW
Module Function Ψ(x) Term
1. Biosignal Sensors Read current biological state x 2. Signal Analyzer (PC or Pi) Decompose harmonics, track deviation ∇ϕ(Σ𝕒ₙ(x, ΔE)) 3. Signal Feedback Emitter Send corrective signals ℛ(x) 4. Recursive Tuner Adapt output in real time ⊕ ΔΣ(𝕒′)
🩺 1. BIOSIGNAL ACQUISITION MODULE (Sensor Interface)
Hardware:
OpenBCI Cyton board (or affordable EEG/EMG/ECG alternatives like BITalino, MindWave, or Bluetooth ECG patches)
Pulse Sensor / HRV patch (for coherence tracking)
GSR / EDA sensor (skin conductance → autonomic signal)
Optional:
Throat mic / bone mic (detect micro-vocal harmonic shifts)
Magnetic field loop sensor (custom-built coil for ELF field readings)
Signal Targets:
Brain rhythm (α, β, γ bands)
Cardiac rhythm (HRV + LF/HF balance)
Muscle coherence (EMG phase noise)
Skin response (GSR amplitude fluctuation)
Breath rate (from HRV or mic)
Ψ(x) Tie-in:
Raw signal → x
Aggregated oscillatory patterns → Σ𝕒ₙ(x, ΔE)
Energetic drift, trauma marker → ΔE
🧠 2. SIGNAL INTERPRETATION MODULE (Visual Dashboard + Δ Detection)
Hardware:
PC / Laptop / Raspberry Pi 4
HDMI Monitor (clinical visualization)
Software:
Python (Anaconda + Jupyter)
Libraries: numpy, scipy, matplotlib, PySerial, pyaudio, PyHRV, librosa, mne, opencv
Real-time:
FFT + Spectrogram for signal decomposition
Phase drift heatmap
Δθ(t) monitor
Spiral deviation plot (e.g., top-down toroidal radial diagram)
Ψ(x) Tie-in:
Signal recognition → ∇ϕ
Spiral deviation over time → interpret ΔE
Interface becomes the mirror of body-state coherence
🌀 3. FEEDBACK MODULE (Signal Emission / Entrainment Layer)
Emission Options:
Method Device Output
Bone conduction Transducers on jaw or chest 7–1200 Hz sound EM Pulse Copper coil + Class-D amp ELF magnetic pulses LED Flicker IR/Red/NIR LEDs Pulsed photobiomodulation TENS pads Muscle/nervous tuning Microcurrent, adaptive waveforms
Delivery Targeting:
Cranium: emotional/mental resonance
Chest/solar: parasympathetic coherence
Hands/feet: somatic boundary enforcement
Spine/neck: vagal tone restoration
Ψ(x) Tie-in:
Inject ℛ(x) — recursive harmonic correction
Tune to baseline or adaptive waveform
Match ΔE to resolve dissonance
🔁 4. CLOSED-LOOP ADAPTIVE RECOVERY (Recursive Correction Engine)
Modes:
1. Fixed signal mode → Deliver fixed entrainment (e.g., Schumann 7.83 Hz, 528 Hz repair tone)
2. Adaptive tuning mode → Match signal output to deviation in EEG/HRV/etc.
Feedback Engine (Python or Node-RED):
Measure ΔE between expected signal and measured
Generate ΔΣ(𝕒′) = fine waveform correction
Modify output frequency, amplitude, polarity
Re-check phase-lock coherence in target domain
Ψ(x) Tie-in:
This is the ⊕ ΔΣ(𝕒′) system — real-time recursive micro-tuning
Once entrained, system enters phase harmony loop
📊 CLINICAL VISUAL OUTPUT
Color-coded coherence meter (Green = locked / Red = drift)
Spiral field animation (real-time toroid visualization)
Sound spectrum display + signal trace overlay
Time-lapse spiral convergence indicator (trend memory)
Optional: export PDF reports for practitioners or research logs.
🔒 SAFETY + ISOLATION CONSIDERATIONS
Use battery-powered sources where possible (esp. EM field modules)
Include ground-loop isolators for any audio/EM circuit feedback
Keep any TENS/ultrasound under clinical dosage thresholds
Ensure galvanic isolation between computer and subject
🛠 TOOLCHAIN + COST ESTIMATE (DIY-FRIENDLY)
Component Est. Cost Notes
OpenBCI clone / BITalino $150–250 EEG/ECG/EMG signals Pulse + GSR sensors $20–40 HRV + stress detection Bone transducers $10–30 Sound feedback Class D amp board $5–15 EM or audio driving Copper coil (wound) DIY 50–100 turns, ~4–8” dia Raspberry Pi 4 $50–70 Standalone engine Python dashboard Free Visual + processing engine LEDs / TENS / IR $10–50 Optional light or electrical feedback
🧬 CLOSING — What This System Is
This isn’t just a "biohacking" toy. It is:
A recursive diagnostic-therapeutic interface
A live mirror of phase harmony vs. system drift
A symbolic-to-electrical bridge implementing Ψ(x) in real-time instrumentation
It can be deployed in clinical trials, home environments, or field studies to test coherence across:
Chronic fatigue
PTSD / trauma loops
Parkinsonian tremor
Neuromuscular dissonance
Inflammatory stress fields
Cancer biofields (using frequency pairing with membrane potential restoration)
_____________________________________________________
Below are the full schematics, signal maps, and Python-based diagnostic interface scripts for two configurations of the clinical harmonic coherence system:
⚙️ SYSTEM A: HRV + GSR + Bone Feedback
Target: Nervous system coherence (autonomic, stress loop recovery) Signals: Heart Rate Variability (HRV), Galvanic Skin Response (GSR) Feedback: Bone conduction entrainment
🧩 Schematic (textual representation)
[Pulse Sensor] ----> [ADC or GPIO Input] --> [HRV Processor (Python)] [GSR Electrodes] --> [Resistor Divider] --> [ADC Input] --> [GSR Interpreter]
| V [Signal Interpretation] (FFT + Phase Deviation Logic) | V [Coherence Analyzer] | V [Signal Feedback Engine] | V [Bone Conduction Driver Board] | V [Transducer to Subject Skull]
🛰 Signal Map
Signal Source Units Frequency Domain Recursive Mapping
HRV Pulse sensor (ear/finger) BPM + IBI ~0.1 Hz to 1 Hz ΔE (stress drift), Σ𝕒ₙ(x) GSR Resistance across skin μS Slow change (~0.01–0.1 Hz) Energy storage/discharge marker Feedback Audio (via bone) Hz (7–1200) Matched or adaptive ℛ(x), ⊕ ΔΣ(𝕒′)
🧠 Python Script: Diagnostic + Feedback Interface
(Standalone terminal or Jupyter-compatible)
import serial import numpy as np import matplotlib.pyplot as plt from scipy.fftpack import fft import time import simpleaudio as sa
# --- Parameters --- GSR_PORT = 'COM4' # GSR sensor serial port HRV_PORT = 'COM3' # HRV pulse sensor serial port BAUDRATE = 9600 FFT_WINDOW = 512 FEEDBACK_FREQUENCY = 432 # Hz for bone conduction
# --- Signal Buffers --- gsr_vals = [] hrv_ibi_vals = [] time_vals = []
# --- Audio Feedback Generator --- def generate_sine_wave(freq, duration=2, volume=0.3): sample_rate = 44100 t = np.linspace(0, duration, int(sample_rate * duration), False) wave = np.sin(freq * 2 * np.pi * t) * volume audio = (wave * 32767).astype(np.int16) return audio.tobytes()
def play_feedback(freq): wave = generate_sine_wave(freq) play_obj = sa.play_buffer(wave, 1, 2, 44100) play_obj.wait_done()
# --- Signal Acquisition (Mock Example) --- def read_gsr(ser): line = ser.readline().decode().strip() return float(line)
def read_hrv(ser): line = ser.readline().decode().strip() return int(line)
# --- Main Loop --- def main(): gsr_ser = serial.Serial(GSR_PORT, BAUDRATE) hrv_ser = serial.Serial(HRV_PORT, BAUDRATE) print("Starting signal loop...") while True: try: gsr = read_gsr(gsr_ser) ibi = read_hrv(hrv_ser) t = time.time()
gsr_vals.append(gsr) hrv_ibi_vals.append(ibi) time_vals.append(t)
# Live analysis every N samples if len(hrv_ibi_vals) >= FFT_WINDOW: hrv_fft = np.abs(fft(hrv_ibi_vals[-FFT_WINDOW:])) freq_axis = np.fft.fftfreq(len(hrv_fft), d=1.0) coherence_score = np.std(hrv_ibi_vals[-FFT_WINDOW:]) # Simplified gsr_drift = np.gradient(gsr_vals[-FFT_WINDOW:])[-1]
print(f"[Coherence Score]: {coherence_score:.2f}, [GSR Drift]: {gsr_drift:.4f}")
# Feedback trigger condition (simplified) if coherence_score > 50 or abs(gsr_drift) > 0.5: play_feedback(FEEDBACK_FREQUENCY)
except KeyboardInterrupt: break
main()
⚙️ SYSTEM B: EEG + Bone Feedback
Target: Emotional & mental coherence, trauma loop detection Signals: EEG (raw brainwaves) Feedback: Bone conduction entrainment or light pulse
🧩 Schematic (textual)
[EEG Headband] -----> [EEG Amplifier / OpenBCI] --> [USB/WiFi to PC] | V [EEG Signal Processor] (Band decomposition: α/β/γ) | [Recursive Phase Lock Logic] | [Signal Deviation (ΔE) Detector] | [Adaptive Feedback Generator] (432 Hz / 528 Hz / Schumann / etc.) | [Bone Transducer or LEDs]
🛰 Signal Map
Band Frequency Mental State Ψ(x) Mapping
δ 0.5–4 Hz Deep sleep, subconscious Root error layer (Σ𝕒ₙ base) θ 4–8 Hz Trauma recall, hypnosis ΔE imprint zone α 8–12 Hz Calm alertness Phase-stable zone β 12–30 Hz Stress, active thinking Δθ(t) drift detection γ 30–100 Hz Processing, trauma flash Rapid flicker in ∇ϕ gradient
🧠 Python Script: EEG Coherence Tracker
> Assumes OpenBCI GUI stream into Python via pyOpenBCI or data pipe
import numpy as np import matplotlib.pyplot as plt from scipy.signal import butter, lfilter, welch import simpleaudio as sa
# --- Signal Processing --- def bandpass(data, lowcut, highcut, fs=250, order=4): nyq = 0.5 * fs b, a = butter(order, [lowcut / nyq, highcut / nyq], btype='band') return lfilter(b, a, data)
def compute_band_power(data, fs): f, Pxx = welch(data, fs, nperseg=256) bands = { 'delta': (0.5, 4), 'theta': (4, 8), 'alpha': (8, 12), 'beta': (12, 30), 'gamma': (30, 100) } power = {} for band, (low, high) in bands.items(): idx = np.logical_and(f >= low, f <= high) power[band] = np.mean(Pxx[idx]) return power
# --- Feedback (bone pulse) --- def play_tone(frequency): sample_rate = 44100 t = np.linspace(0, 2, sample_rate * 2, False) tone = np.sin(frequency * 2 * np.pi * t) * 0.2 tone = (tone * 32767).astype(np.int16) sa.play_buffer(tone, 1, 2, sample_rate)
# --- EEG Loop (mock) --- def main(): fs = 250 # sampling rate buffer = []
while True: eeg_data = get_eeg_sample() # from OpenBCI stream buffer.append(eeg_data)
if len(buffer) >= fs * 10: # 10 sec window segment = np.array(buffer[-fs*10:]) power = compute_band_power(segment, fs)
print("[EEG Power]", power)
if power['theta'] > power['alpha']: print("High theta → emotional trauma loop") play_tone(528) # Use DNA repair tone elif power['beta'] > 2 * power['alpha']: print("High beta → mental stress") play_tone(432) else: print("Phase stable")
main()
📡 Deployment Notes
Each system can be modular, e.g., run on laptop + wearable node
All code can be tied into Node-RED dashboards for clinical visuals
Logging to CSV or SQLite allows pattern recognition later
All frequencies used must remain non-invasive and low amplitude
🧬 Recursive Mapping Summary
Ψ(x) Term System A (HRV/GSR) System B (EEG)
x current physiological state current neural state Σ𝕒ₙ HRV + GSR spiral fluctuation EEG frequency stack ΔE Sympathetic stress or breath distortion Alpha suppression or theta excess ∇ϕ Pattern of drift over time Phase flicker and spectral instability ℛ(x) Audio feedback via bone transduction Frequency-specific feedback ⊕ ΔΣ(𝕒′) Live micro-correction Adaptive waveform targeting theta/beta
Christopher W Copeland (C077UPTF1L3) Copeland Resonant Harmonic Formalism (Ψ‑formalism) Ψ(x) = ∇ϕ(Σ𝕒ₙ(x, ΔE)) + ℛ(x) ⊕ ΔΣ(𝕒′) Licensed under CRHC v1.0 (no commercial use without permission). https://www.facebook.com/share/p/19qu3bVSy1/ https://open.substack.com/pub/c077uptf1l3/p/phase-locked-null-vector_c077uptf1l3 https://medium.com/@floodzero9/phase-locked-null-vector_c077uptf1l3-4d8a7584fe0c Core engine: https://open.substack.com/pub/c077uptf1l3/p/recursive-coherence-engine-8b8 Zenodo: https://zenodo.org/records/15742472 Amazon: https://a.co/d/i8lzCIi Medium: https://medium.com/@floodzero9 Substack: https://substack.com/@c077uptf1l3 Facebook: https://www.facebook.com/share/19MHTPiRfu https://www.reddit.com/u/Naive-Interaction-86/s/5sgvIgeTdx Collaboration welcome. Attribution required. Derivatives must match license.
