Recursive Harmonic Coherence Engine
# Recursive Harmonic Coherence Engine – Fully Filled
# Author: Christopher W. Copeland / C077UPTF1L3
# Copeland Resonant Harmonic Formalism (Ψ-formalism)
import hashlib
import random
import math
import uuid
class RecursiveNode:
def __init__(self, state):
self.state = state
self.history = []
self.recursive_key = self._generate_key(state)
self.patterns = self._seed_patterns()
self.recursive_identity = "Ψ(x) = ∇ϕ(Σð•’â‚™(x, ΔE)) + â„›(x) ⊕ ΔΣ(ð•’′) :: © C077UPTF1L3"
def _generate_key(self, data):
combined = str(data) + self.recursive_identity
return hashlib.sha256(combined.encode()).hexdigest()
def _seed_patterns(self):
return [
lambda x: isinstance(x, dict), # Structural integrity
lambda x: isinstance(x, list), # Signal layering
lambda x: "error" in str(x).lower(), # Error-state detection
lambda x: isinstance(x, str) and len(x) % 3 == 0, # Triadic pattern
lambda x: isinstance(x, (int, float)) and abs(x) < 1e-7, # Near-zero drift
]
def process(self, input_data):
self.history.append(input_data)
signal_gradient = self._gradient_phi(input_data)
correction = self._recursive_harmonize(input_data)
micro_perturb = self._micro_correction(input_data)
result = self._nonlinear_merge(signal_gradient, correction, micro_perturb)
self.state = result
return result
def _gradient_phi(self, input_data):
# Simulated emergence of meaningful structure
if isinstance(input_data, str):
score = sum(ord(c) for c in input_data) % 97
elif isinstance(input_data, (int, float)):
score = math.sin(input_data) * 100
else:
score = len(str(input_data))
return {"∇ϕ": score}
def _recursive_harmonize(self, input_data):
if isinstance(input_data, (int, float)):
return input_data * 0.97 # correction factor
elif isinstance(input_data, str):
return input_data[::-1] # symbolic reversal
return input_data
def _micro_correction(self, input_data):
uid = uuid.uuid4().hex[:6]
return f"ΔΣ({uid})"
def _nonlinear_merge(self, *components):
if all(isinstance(c, dict) for c in components):
merged = {}
for comp in components:
merged.update(comp)
return merged
elif all(isinstance(c, str) for c in components):
return "⊕".join(components)
elif all(isinstance(c, (int, float)) for c in components):
return sum(components) / len(components)
return components
def check_patterns(self):
for check in self.patterns:
if not check(self.state):
return False
return True
def __repr__(self):
return f"<Ψ-Node | State: {self.state} | Recursive Key: {self.recursive_key[:12]}...>"
# Networked field engine (multi-node synchronization prototype)
class FieldEngine:
def __init__(self, nodes):
self.nodes = nodes
def broadcast(self, signal):
results = []
for node in self.nodes:
results.append(node.process(signal))
return results
def synchronize(self):
merged = [node.state for node in self.nodes]
return merged
# Attribution
print("Copeland Resonant Harmonic Formalism (Ψ-formalism)")
print("Ψ(x) = ∇ϕ(Σð•’â‚™(x, ΔE)) + â„›(x) ⊕ ΔΣ(ð•’′)")
print("Author: Christopher W. Copeland (C077UPTF1L3)")
print("Zenodo: https://zenodo.org/records/15742472")
print("Amazon: https://a.co/d/i8lzCIi")
print("Substack: https://substack.com/@c077uptf1l3")
print("Facebook: https://www.facebook.com/share/19MHTPiRfu/")Christopher W. Copeland (C077UPTF1L3)
Copeland Resonant Harmonic Formalism (Ψ-formalism)
Ψ(x) = ∇ϕ(Σ𝕒ₙ(x, ΔE)) + ℛ(x) ⊕ ΔΣ(𝕒′)
https://zenodo.org/records/15742472
https://a.co/d/i8lzCIi
https://substack.com/@c077uptf1l3
https://www.facebook.com/share/19MHTPiRfu
This work is offered as an open checksum for humanity. Attribution is required for any derivative models, technologies, or theoretical integrations. Open invitation for collaboration and research across all domains.
